牛客链表题:BM2 链表内指定区间反转

描述

将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转,要求时间复杂度 𝑂(𝑛)O(n),空间复杂度 𝑂(1)O(1)。
例如:
给出的链表为 1→2→3→4→5→𝑁𝑈𝐿𝐿  ,m=2,n=4,
返回 1→4→3→2→5→𝑁𝑈𝐿𝐿.

数据范围: 链表长度 0<𝑠𝑖𝑧𝑒≤10000,0<𝑚≤𝑛≤𝑠𝑖𝑧𝑒,链表中每个节点的值满足 ∣𝑣𝑎𝑙∣≤1000

要求:时间复杂度 𝑂(𝑛)O(n) ,空间复杂度 𝑂(𝑛)O(n)

进阶:时间复杂度 𝑂(𝑛)O(n),空间复杂度 𝑂(1)O(1)

示例1

输入:

{1,2,3,4,5},2,4

返回值:

{1,4,3,2,5}

示例2

输入:

{5},1,1

返回值:

{5}

思路:

这道题的关键是:

①找到“需要转换的序列”前面“最后一个无需转换的节点位置”;

②找到“需要转换的序列”的“第一个节点”;

③找到“需要转换的序列”后“第一个无需转换的节点”。

代码

/**
 * struct ListNode {
 *	int val;
 *	struct ListNode *next;
 *	ListNode(int x) : val(x), next(nullptr) {}
 * };
 */
class Solution {
public:
    /**
     * 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
     *
     * 
     * @param head ListNode类 
     * @param m int整型 
     * @param n int整型 
     * @return ListNode类
     */
    ListNode* reverseBetween(ListNode* head, int m, int n) {
        // write code here
        ListNode *cur = head, *tmp, *first = head;
        ListNode* nhead=new ListNode(-1);//哑节点(虚拟头节点),为了防止m=n=1时,tmp取不到最后一位不需要逆序的节点,而取到了和cur一样的第一位需要逆序的节点
        nhead ->next = head;
        tmp = nhead;
        
        for(int i = 1; i<m; i++)
        {
            tmp = cur;//tmp取到需要逆序的前一位
            cur = cur->next;//cur取到需要逆序的第一位
        } 
        first = cur;//first用于记住第一位需要逆序的节点,即逆序后的最后一位,用于在最后连接上剩下无需逆序的序列。
        for(int i = m; i <=n; i++)//循环需要逆序的序列中的节点,并连接在tmp后(记住:tmp正是无需逆序的最后一个节点)
        {
            ListNode *next = cur->next;//用于存放剩下的全部节点
            cur->next = tmp->next;
            tmp->next = cur;
            //以上两句是重点,由于无法直接在tmp节点后加节点cur,因此先把cur也连接在tmp的后一个节点,然后将tmp->next指向cur,则成功加入节点cur
            cur = next;
        }
        first->next = cur;//连接上剩下无需逆序的节点
        cur = nhead->next;//丢弃哑节点
        delete nhead;
        return cur;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/782528.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

InvalidVersionSpecError: Invalid version spec: =2.7解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

驾校管理系统的全面革新与升级

智慧驾校系统是一款专为现代驾校量身定制的综合性管理平台,它深度融合了云计算、大数据、物联网及人工智能等前沿技术,旨在为驾校打造一个高效、智能、便捷的运营生态系统。该系统通过数字化、信息化的手段,彻底革新了传统驾校的管理模式,不仅极大地提升了驾校的运营效率,…

初识Spark

一、简介 官网&#xff1a;Apache Spark™ - Unified Engine for large-scale data analytics Apache的顶级项目&#xff0c;用于大规模数据处理的统一分析引擎。 支持语言&#xff1a;Java、Scala、Python和R (源码为Scala) 高级工具&#xff1a; 1、SparkSQL用于SQL和结构…

ARM汇编与机器码、汇编指令

文章目录 1. CISC与RISC指令集 2. ARM汇编指令 3. 汇编与机器码 4. 汇编指令格式 5. MOV指令 6. BL指令 7. B指令 8. ADD/SUB指令 9. LDR/STR指令 1. CISC与RISC指令集 根据指令的复杂度&#xff0c;所有CPU可以分为两类&#xff1a; CISC&#xff08;Complex Instr…

破局 AI 2.0 时代:利用 AI 提升自我核心竞争力

文章目录 破局 AI 2.0 时代&#xff1a;利用 AI 提升自我核心竞争力1. AI 2.0 时代1.1 特点1.2 发展1.3 影响 2. AI 2.0 时代的机遇 & 挑战2.1 AI 对行业市场的冲击2.2 挑战变为机遇2.3 不同场景下的 AI 效能提升2.3.1 自动化办公任务2.3.2 提升学习效率2.3.3 创意生成与内…

SpringBoot彩蛋之定制启动画面

写在前面 在日常开发中&#xff0c;我们经常会看到各种各样的启动画面。例如以下几种 ① spring项目启动画面 ② mybatisplus启动画面 ③若依项目启动画面 还有很多各式各样好看的启动画面&#xff0c;那么怎么定制这些启动画面呢&#xff1f; 一、小试牛刀 ① 新建一个Spr…

【分布式系统三】监控平台Zabbix对接grafana(截图详细版)

目录 一.安装grafana并启动 二.浏览器访问 三.导入zabbix数据&#xff0c;对接grafana 四.如何导入模版 以前两篇博客为基础 【分布式系统】监控平台Zabbix介绍与部署&#xff08;命令截图版&#xff09;-CSDN博客 【分布式系统】监控平台Zabbix自定义模版配置-CSDN博客 …

前端面试题(CSS篇五)

一、设备像素、css 像素、设备独立像素、dpr、ppi 之间的区别&#xff1f; 设备像素指的是物理像素&#xff0c;一般手机的分辨率指的就是设备像素&#xff0c;一个设备的设备像素是不可变的。 css像素和设备独立像素是等价的&#xff0c;不管在何种分辨率的设备上&#xff0c;…

网络连接线相关问题

问题1&#xff1b; 直通线为什么两头都是T568B&#xff1f;是否可以两台T5568A&#xff1f;或者任意线序&#xff0c;只需两头一致&#xff1f; 不行&#xff0c;施工规范规定。&#xff08;原因&#xff1b;网线最长距离100m&#xff0c;实际用起来要把网线包管&#xff0c;走…

Kafka第四篇——生产数据总体概括,源码解析分区策略,数据收集器,Sender发送线程,key值

目录 流程图以及总体概述 拦截器 分区器以及分区计算策略 为啥进行分区计算&#xff1f; producer生产者怎么知道有哪些分区&#xff1f; 分区计算 如何自定义实现分区器&#xff1f; 想说的在图里啦&#xff01;宝宝&#xff01;&#x1f4a1; ​编辑 如果key值忘记传递了呢&a…

前端后花园周刊vol.18-React Native 称唯一推荐的社区框架是Expo

⚡️行业动态 React Native 团队推荐使用 Expo 框架构建应用程序 React Native 发文称&#xff1a;唯一推荐的社区框架是Expo&#xff0c;Expo 的开发者从 React Native 早期就开始支持 React Native 生态系统&#xff0c;相信 Expo 提供的开发者体验是同类中最好的。 &…

vscode调试教程

VSCode调试 VSCode Debuggers VSCode使用launch.json进行细粒度的控制&#xff0c;可以启动程序或将其附加到复杂的调试场景中 打开Run and Debug视图Ctrl Shift D 点击create a launch.json file&#xff0c;选择C(GDB/LLDB) 会在工作目录自动创建.vscode/launch.json文…

简单的基追踪一维信号降噪方法(MATLAB 2018)

基追踪法是基于冗余过完备字典下的一种信号稀疏表示方法。该方法具有可提高信号的稀疏性、实现阈值降噪和提高时频分辨率等优点。基追踪法采用表示系数的范数作为信号来度量稀疏性&#xff0c;通过最小化l型范数将信号稀疏表示问题定义为一类有约束的极值问题&#xff0c;进而转…

【linux服务器】大语言模型实战教程:LLMS大模型部署到个人服务器或嵌入式开发板(保姆级教学)

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引言 说到大语言模型相信大家都不会陌生&#xff0c;大型语言模型(LLMs)是人工智能文本处理的主要类型,也现在最流行的人工智能…

julia系列17: tsp问题代码整理

1. 常用库和基础函数 这里是优化版的函数&#xff1a; using TSPLIB,LKH,Distances,PyPlot MaxNum 10000 tspreadTSPLIB(:att48) dist [round.(Int,euclidean(tsp.nodes[i,:],tsp.nodes[j,:])) for i in 1:tsp.dimension,j in 1:tsp.dimension]; pos(tsp::TSP,t::Vector{In…

Games101学习笔记 Lecture17 Materials and Appearances

Lecture17 Materials and Appearances 材质 BRDF一、Diffuse/Lambertian Material二、Glossy Material三、Ideal reflective/ refractive Material (BSDF)1.镜面反射2.镜面折射3.菲涅尔项 Fresnel 四、Microfacet BRDF 微表面五、Isotropic / Anisotropic Materials (BRDFs)An…

python - 文件 / 永久存储:pickle / 异常处理

一.文件 利用help(open)可以看到open()函数的定义&#xff1a; >>> help(open) Help on built-in function open in module _io:open(file, moder, buffering-1, encodingNone, errorsNone, newlineNone, closefdTrue, openerNone) 默认打开模式是’rt’&#xff0…

王者荣耀与和平精英的语音识别不准确怎么办?分享一次意想不到的解决经历!

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 完整经历 📒🔍 问题初现 🔍🔎 排查之路:从绝望到希望的转折 🔎🎉 顿悟时刻:原来是“她”的恶作剧 🎉⚓️ 相关链接 ⚓️📖 介绍 📖 作为一位打字速度惊人的玩家,我向来自豪于能在王者荣耀和和平精英等游戏…

Three.js机器人与星系动态场景(四):封装Threejs业务组件

实际在写业务的时候不会在每个组件里都写几十行的threejs的初始化工作。我们可以 将通用的threejs的场景、相机、render、轨道控制器等进行统一初始化。同时将非主体的函数提到组件外部&#xff0c;通过import导入进组件。将业务逻辑主体更清晰一些。下面的代码是基于reactthre…

DHCP与TCP的简单解析

目录 一、DHCP 1.1 DHCP概述 1.2 DHCP的优势 1.3 DHCP的模式与分配方式***** 1.3.1 DHCP的模式&#xff1a;C/S模式&#xff08;客户机与服务器模式&#xff09; 1.3.2 DHCP的分配方式 1.4 DHCP的租约过程及原理 1.4.1 DHCP的工作原理***** 1.4.2 更新租约原理***** …